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ABSTRACT
The incidence and spread of Human Immune Deficiency Virus (HIV) and the consequent Acquired 
Immune Deficiency Syndrome (AIDS) is really a matter of great concern in many of the countries. 
The spread of HIV is at an alarming rate and the complete cure from the same is not yet available. 
The people in the field of medicine strive hard and do research to find a medicine to cure the 
disease. The use of mathematical namely stochastic models to describe the rate of spread of 
epidemic, to determine the likely time at which a person becomes seropositive and also the likely 
time at which a person becomes an AIDS case are all areas of interest in medical research. In this 
paper, a stochastic model to derive the expected time to seroconversion under the assumption that 
both the antigenic diversity threshold and the virulence threshold are such that they are random 
variables distributed as the nth order statistic. In doing so it assumed that the occurrence of the 
seroconversion takes place if either the cumulative antigenic diversity of the invading antigens 
crosses the so called antigenic diversity threshold or the cumulative level of virulence crosses 
the virulence threshold level. In doing so the shock model and cumulative damage process due to 
Eassary et.al (1973) has been applied. Numerical illustrations have also been provided.
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Introduction

The progression of HIV to Acquired Immune Deficiency 
Syndrome (AIDS) is a matter of concern due to the 
fact that the affected person suffers both physical and 
mental torture. The governments in administration 
suffer a great burden both financially and social. Many 

authors have used Mathematical and Stochastic models 
to depict the progression of this infection among the 
affected. Nowak and May (1991) have identified the 
antigenic diversity as the main cause for the progression 
of the infection. They also describe a particular level of 
antigenic diversity as antigenic diversity threshold. It 
is observed that not only the antigenic diversity of an 
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invading antigen plays a vital role in the progression 
of the infection but also the virulence of the antigens. 
May and Anderson (1983) have given an interpretation 
of virulence and its impact. The concept of virulence 
threshold in AIDS has been discussed by Boer et.al. 
(1994). Bull (1994) has discussed about the virulence of 
the invading antigens and its perspective. In this paper 
the expected time to seroconversion of the infected is 
derived under the assumption that both the antigenic 
diversity threshold and virulence threshold are such 
that they are random variables distributed as the nth 
order statistic. Numerical illustrations have also been 
provided.

Assumptions 

A person is exposed to sexual contacts with an 1.	
infected partner and on each occasion of contact 
the transmission of HIV takes place.
The mode of transmission of HIV on successive 2.	
occasions results in the contribution to the antigenic 
diversity of the invading antigens. Also there is 
increase in the virulence of the invading antigens.
As and when the total antigenic diversity crosses 3.	
a particular level called the antigenic diversity 
threshold, then the seroconversion takes place. 
Similarly if the total virulence of the invading 
antigens crosses the virulence threshold, then the 
seroconversion will occur.
The crossing of both antigenic diversity threshold 4.	
and virulence threshold simultaneously is 
considered to be an impossible event.
The two thresholds are random variables and are 5.	
mutually independent.

Notations 

Xi	 :	 a random variable denoting the contribution 
to antigenic diversity on    the th contact     and 
with probability density function g(.) with 
cumulative distribution function G(.)

Yi	 :	 the increase in the virulence due to the  th 
contact     with probability density function q 
(.) and cumulative distribution function Q(.)

Z1	 :	 a random variable denoting antigenic diversity 
threshold. It follows the   order statistic and 
has    probability     density function   and 
cumulative distribution function  

Z2	 :	 a random variable denoting the virulence 
threshold. It follows the   order statistic and 
has    probability     density function   and 
cumulative distribution function  

Ui	 :	 a random variable  denoting the   inter  arrival  
times    between contacts    with probability 
density function of f (.) and cumulative 
distribution function F(.)

l*(s)	 :	 Laplace transform of  l(t)
T	 :	 time to seroconversion 

Model Descriptions and Results

The survivor function is given by
S (t) = P [T > t]
= P [The total antigenic diversity due to 'k' contacts 

does not cross the threshold level and total vinllince 
developed due to k contacts does not cross the vinulence 
threshold]

k k k k

i 1 i 2 i 1 i 2
i 1 i 1 i 1 i 1

S(t) P x Z y Z P x Z P x Z
= = = =

   
   = < < = < <
      
∑ ∑ ∑ ∑∩

= Pr [That there are K contacts in (0, t) and the 
antigenic diversity does not cross threshold and the 
vinllence does not cross the threshold]

k k 1 k k
k 0 0 0

S(t) [F (t) F (t)] g (x) H(x)dx g (y) M(y)dy
∞ ∞∞

+
=

   
   = −
      

∑ ∫ ∫

Let Z1 follows nth order Statistic
∴ h(n) (Z1) = n [H(Z1)]

n–1h(Z1) 
And Let

1 1Z Zn 1
1Z ~ exp( ) n [1 e ] e− θ − θ−θ = θ −

x
n (n) 10

Now H (x) h (Z ) dy= ∫
x n

nH (x) 1 [1 e ]− θ= − −

Let Z2 follows nth order Statistic
∴ m(n) (Z2) = n [M(Z2)]

n–1m(Z2) 
And Let

2 2Z Zn 1
2Z ~ exp ( ) n [1 e ] e− λ − λ−λ = λ −
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y
n (n) 20

y n
n

Now M (y) m (Z )dx

M (y) 1 [1 e ]− λ

=

= − −

∫

k k 1k 0

x n y n
k k0 0

k k 1
k 0

Hence, S(t) [F (t) F (t)]

g (x)[1 (1 e ) ]dx q (y)[1 (1 e ) ]dy

[F (t) F (t)]

∞
+=

∞ ∞− θ − λ

∞
+

=

= −

   − − − −      

= −

∑

∫ ∫

∑

x 2x
k 2 k0 0

n nx
k0

g (x) ne dx nc g (x)e dx ......

( 1 ) g (x)e dx ......

∞ ∞− θ − θ

∞ − θ

 − +
− + 

∫ ∫

∫

y 2y
k 2 k0 0

n ny
k0

g (y) ne dy nc q (y)e dy ......

( 1 ) q (y)e dy

∞ ∞− λ − λ

∞ − λ

 − +
− 

∫ ∫

∫

[ ]

[ ]

[ ]

*
k k 1 k 2 k

k 0

n
k k

n
2 k k

[F (t) F (t)] [ng * ( )] [nc g (2 )] ....

[( 1) g * (n )] [nq * ( )]

[nc q * (2 )] .... [( 1) q * (n )]

∞
+

=

 = − θ − θ 

 − θ + λ 
 − λ − λ 

∑

where Fk(t) – Fk+1(t)
denotes the probability of exactly k contacts during 

(o, t) by renewal theory.

* * k 1 *
k 2

k 1

* k 1 n *
k

k 1

* k 1
kk 1

n[1 g ( )] F (t)[g ( )] nc [1 g (2 )]
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k
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∞
−

=
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−

=
∞ −

=

− λ λ − − λ

λ − − λ

λ

∑

∑

∑
(On simplification)
L(t) = P [T < t] = 1 – s(t)
Taking the Laplace trance form of L(t) we have   

L*(S) and then using the relationship

* k
* * *

k
1 [f (s)]

L (S) (S) and F (s)
s s

= =l

We have
Now,

* * * k 1 * * k 1

k 1
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* ** *
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* * * *
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3 4
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* * *
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[1 g (3 ) f (s)] [1 g (4 ) f (s)]

nc [1 g (5 )]f (s) ( 1) [1 g (n )]f (s)
.....
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+ −

− θ − θ

− θ − − θ
+

− θ − θ *(s)]

* ** *
2

* * * *

* * * *
3 4

* * * *

* * n * *
5

* * *

nc [1 q (2 )]f (s)n[1 q ( )f (s)

[1 q ( )f (s)] [1 q (2 ) f (s)]

nc [1 q (3 )]f (s) nc [1 q (4 )]f (s)

[1 q (3 ) f (s)] [1 q (4 ) f (s)]

nc [1 q (5 )]f (s) ( 1) [1 q (n )]f (s)
.....

[1 q (5 ) f (s)] [1 q (n ) f

− λ− λ
= −

− λ − λ

− λ − λ
+ −

− λ − λ

− λ − − λ
+

− λ − λ *(s)]

(On simplification)
Then,
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1 * *

* *
2

2 * *

* *
3

3 * *

* *
4

4 * *

* *
5

5 * *

n * *

n

n[1 g ( )]f (S)
T

[1 g ( )f (S)]

nc [1 g (2 )]f (S)
T

[1 g (2 )f (S)]

nc [1 g (3 )]f (S)
T

[1 g (3 )f (S)]

nc [1 g (4 )]f (S)
T

[1 g (4 )f (S)]

nc [1 g (5 )]f (S)
T

[1 g (5 )f (S)]

......

1 [1 g (n )]f
T

− θ
=

− θ

− θ
=

− θ

− θ
=

− θ

− θ
=

− θ

− θ
=

− θ

− − θ
=

* *
(S)
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1 * *

* *
2

2 * *

* *
3

3 * *

* *
4

4 * *

* *
5

5 * *

n * *

n

n[1 g ( )]f (S)
S

[1 g ( )f (S)]

nc [1 g (2 )]f (S)
S

[1 g (2 )f (S)]

nc [1 g (3 )]f (S)
S

[1 g (3 )f (S)]

nc [1 g (4 )]f (S)
S

[1 g (4 )f (S)]

nc [1 g (5 )]f (S)
S

[1 g (5 )f (S)]

......

1 [1 g (n )]f
S

− λ
=

− λ

− λ
=
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− λ
=

− λ

− λ
=

− λ

− λ
=

− λ

− − λ
=

* *
(S)

[1 g (n )f (S)]− λ

*d
When E(T) (s) / s 0

ds

−
= =l

* n
We assuming that f ( ) ~ exp ( ) and f (S)

n s
⋅ η =

+

*

*

g( ) ~ exp ( ) and g ( )

g( ) ~ exp ( ) and g ( )

β⋅ β θ = β + θ
µ⋅ µ λ = µ + λ

32

n 1
54

nc ( 3 )nc ( 2 )n ( )
E(T)

2 3

nc ( 5 )nc ( 4 ) ( 1) ( n )
.....

4 5 n

+

β + θβ + θβ + θ
= − +

ηθ ηθ ηθ

β + θβ + θ − β + θ
− +

ηθ ηθ ηθ

32

n 1
54

nc ( 3 )nc ( 2 )n ( )

2 3

nc ( 5 )nc ( 2 ) ( 1) ( n )
.....

4 5 n

+
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ηλ ηλ ηλ

µ + λµ + λ − µ + λ
− +

ηλ ηλ ηλ

Now to find E(T2) we have
2 *

2
2

222
2 32

2 2 2

22 2
n 154

2 2 2

d (s)
E(T ) / s 0

ds

2nc ( 3 )2nc ( 2 )2n( )
E(T )

(n ) (2n ) (3n )

2nc ( 5 )2nc ( 4 ) 2( n )
....( 1)
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+

= =

β + θβ + θβ + θ
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β + θβ + θ β + ϕ
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θ θ ηϕ

l

222
32

2 2 2

22 2
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2 2 2

2nc ( 3 )2nc ( 2 )2n( )

(n ) (2n ) (3n )

2nc ( 5 )2nc ( 4 ) 2( n )
....( 1)

(4n ) (5n ) (n )

+

µ + λµ + λµ + λ
+ − +

λ λ λ

µ + λµ + λ µ + λ
− + −

λ λ ηλ

Now V (T) = E(T2) = [E(T)]2

From (5) and (6) the expression for V(T) can be 
obtained.

222
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2 2 2

22 2
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2 2 2

222
32

2 2 2
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2

2nc ( 3 )2nc ( 2 )2n( )
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+
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 θ θ θ
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θ θ ηθ
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λ λ λ
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λ

2
n 1

2 2
2( n )

....., ( 1)
5n ) (n )
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λ ηλ 

32
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n 2n 3n
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...

4n 5n n

+
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R. Ramajayam et al. / St. Joseph’s Journal of Humanities and Science (Volume 3 Issue 2 August 2016) 31-38  35

Numerical Illustration

The behaviour of   and   due to the changes in the 
different parameters associated with the distribution 
of the random variables in the model is explained by 
taking a numerical example. 

Table 1:  

Changes of E (T) and V (T) due to the variations in  

2.0, θ = 1.5, λ = 1.2, n = 10, β = 0.5

μ E (T) V (T)
1
2
3
4
5
6
7
8
9
10

0.5332
0.5843
0.6256
0.6643
0.6903
0.7463
0.7823
0.8231
0.8637
0.8847

0.2212
0.2847
0.3267
0.3689
0.4023
0.4271
0.4821
0.5129
0.5432
0.5723

Fig. 1:  

Changes of E (T) and V (T) due to the variations in λ

Table 2:  

Changes of E (T) and V (T) due to the variations in

2.0, θ = 1.5, λ = 1.2, n = 1.0, β = 0.5

μ E (T) V (T)
1 2.9731 2.9813
2 1.8935 1.0281
3 1.2814 0.6152
4 0.9445 0.5219
5 0.8321 0.4120
6 0.7845 0.2642

7 0.7060 0.2113
8 0.4919 0.1823
9 0.3214 0.1029
10 0.2026 0.0934

Fig.2: Changes of E (T) and V (T) due to the variations in λ

Table 3:  

Changes of E (T) and V (T) due to the variations in  

2.0, λ = 1.5, μ = 1.2, n = 10, β = 0.5

θ E (T) V (T)
1
2
3
4
5
6
7
8
9
10

0.9546
0.9345
0.9050
0.8803
0.8734
0.8635
0.8532
0.8421
0.8345
0.8212

0.5273
0.5083
0.4822
0.4723
0.4625
0.4329
0.4211
0.3902
0.3821
0.3756

Fig.3:  

Changes of E (T) and V (T) due to the variations in
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Table 4:  

Changes of E (T) and V (T) due to the variations in η

η E (T) V (T)
1
2
3
4
5
6
7
8
9
10

1.9241
1.6712
1.4042
1.3061
1.1989
0.9800
0.8245
0.7312
0.7165
0.7053

1.9812
1.0714
0.8734
0.7123
0.6145
0.4287
0.3451
0.2230
0.2140
0.1032

Fig 4: Changes of E (T) and V (T) due to the variations in η

Table 5:  

Changes of E (T) and V (T) due to the variations in β

= 1.5, λ = 1.2, μ = 1.0, n = 10, η = 2.0

β E (T) V (T)
1
2
3
4
5
6
7
8
9
10

0.8245
0.8311
0.8464
0.8522
0.8619
0.8721
0.8823
0.8898
0.8923
0.9067

0.4623
0.4745
0.4821
0.4980
0.5023
0.5120
0.5234
0.5406
0.5532
0.5686

Fig.5:  

Changes of E (T) and V (T) due to the variations in β

Table 6:  

Changes of E (T) and V (T) due to the variations in  

= 1.5, λ = 1.2, μ = 1.0, n = 10, η = 2.0

n E (T) V (T)
1
2
3
4
5
6
7
8
9
10

2.7682
2.8274
2.9801
3.0174
3.1542
3.2600
3.3164
3.4217
3.5321
3.6401

1.8652
1.9420
2.0952
2.1752
2.2210
2.3218
2.4721
2.5820
2.6002
2.7812

Fig.6:  

Changes of E (T) and V (T) due to the variations in 
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Conclusion

When μ which is the parameter of the random 1.	
variable Yi denoting the magnitude of contribution 
to virulence threshold is on the increase, it is seen 
that E(T) increases. This is due to the fact that   

follows exponential distribution and so i
1

(Y ) =
µ .  

As  increases then, i
1

(Y ) =
µ  this is the contribution to 

virulence decreases. Hence it takes more time to 
cross the threshold. This is true when Z2 follows nth 
order statistic also. This has been shown in table .1 
and figure. 1.
The threshold is a random variable which is the 2.	
nth order statistic. Now the virulence threshold 
Z2 follows exponential with parameter λ. Hence 

2
1

E (Z ) =
λ

 and it decreases as λ increases. Hence 

the threshold is smaller as λ increases. So as λ 
increases, it takes less time to cross the threshold 
as indicated in table. 2 and figure.2.
The threshold is a random variable which is the 3.	
nth order statistic. Now the antigenic diversity 
threshold Z1 follows exponential with parameter θ. 

Hence 1
1

E (Z ) =
θ

 and it decreases as θ increases. 

Hence the threshold is smaller as θ increases. So as  
θ increases, it takes less time to cross the threshold 
as indicated in table. 3 and figure.3.
The inter arrival times between successive contacts 4.	
distributed as exponential with parameter η. As  
η increases, then E(U) = 1/ η decreases.  Hence,  
the  contacts  will  be more frequent  and  a  
greater  contribution  to  the antigenic  diversity 
and virulence.  So, it takes less time to cross the 
threshold.  Hence E(T) becomes smaller.   This has 
been indicated in table. 4 and figure. 4.
When β which is the parameter of the random 5.	
variable Xi denoting the magnitude of contribution 
to antigenic diversity threshold is on the increase, 
it is seen that E(T) increases. This is due to the 
fact that Xi follows exponential distribution and 

so E(Xi) = 1

β
. As β increases then, 1

β
 this is the 

contribution to antigenic diversity decreases.  
Hence it takes more time to cross the threshold.  
This is true when Z1 follows nth order statistic also.  
This has been shown in table .1 and figure. 1.

As 'n' increases, then the n6.	 th order also increases. 
This would mean that the magnitude of the nth 
order statistic will be greater. Hence, the threshold 
is higher and so it takes more time to cross the 
threshold and so E(T) is on the increase.  This has 
been indicated in table.4 and figure. 4.
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